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Abstract

This paper proposes a robust and efficient method of solving models with endogenous bor-
rowing constraints and strategic default in continuous-time. Using a change of variable the free-
boundary problem is transformed into a boundary value problem on a fixed domain in which
default thresholds enter explicitly as endogenous variables. Default thresholds can then be solved
using algorithms that are analogous to solving for the fixed point of prices in standard general
equilibrium models. I demonstrate the approach using two sovereign default models featuring
short-term and long-term debt, respectively. At last, I show how the method can be applied to

time-dependent problems featuring transition dynamics.

1 Introduction

Strategic default models in continuous-time present two distinct computational challenges. First, the
practitioner must jointly solve a coupled system of partial differential equations (PDEs) together with
the endogenous default decisions, the so-called free boundary. Second, borrowing constraints are
endogenous and themselves a function of the default decision. This paper proposes a method for
solving this class of free boundary problems with endogenous borrowing constraints that is robust,
efficient and generalizable to other settings. The idea is to transform the free boundary problem into a
fixed boundary problem in which the boundary enters the PDE as a parameter. Importantly, this fixes
the computational domain and makes the problem amenable to standard finite difference methods

that can be applied with minimal changes.



The intuition is analogous to the analytical approach to solving optimal stopping time problems. De-
fault decisions can be characterized by the distance of current asset holdings to a default threshold.
It is convenient to define a new state variable in terms of the distance to the default threshold. In this
transformed system, the default threshold is no longer free but is at zero by definition. That is, in the
transformed system the location of the boundary is known ex-ante and for a given guess of the default
threshold the computational domain is fixed. Standard finite difference methods that are consistent,
monotone and stable in the sense of Barles & Souganidis (1991) can be applied without any modifica-
tion to solve the resulting PDEs for a given guess of the default threshold. Finally, the default threshold
is updated using standard Newton methods to ensure that the boundary conditions derived from the

optimal stopping time problem are satisfied.

The resulting structure will be familiar to economists and is analogous to solving for prices in general
equilibrium models. In the transformed system, default thresholds enter as parameters in the value
function which need to satisfy certain "equilibrium conditions" such as value matching. Conceptu-
ally, this is equivalent to the way prices enter the value function as parameters and are pinned down
by a set of general equilibrium conditions to equilibrate demand and supply. Standard root finding

algorithms such as Newton methods can be applied.

I benchmark my method against Bornstein (2020), who develops an algorithm to solve a continuous-
time version of Arellano (2008). Bornstein (2020) proposes a trial method in which he guesses the
default threshold as a function of income and updates the threshold based on the relative value of
being solvent or in default. Relative to this paper I see my contribution as follows. First, the front
fixing approach keeps the computational domain fixed which simplifies the computation of the inner
loop. Second, I do not restrict the borrowing constraints to lie on a pre-specified grid. This increases
the accuracy of the solution. What is more, as models can oscillate because of the discretisation of
the grid (e.g. see Bornstein (2020)) this helps with convergence in models with long-run debt. Third,
by transforming the problem into one that is continuous in the default threshold I make the problem
amenable to gradient based methods which are efficient and provide a well-informed updating rule.
In contrast, the updating rule by Bornstein (2020) potentially throws away a lot of useful information
and might achieve less robust convergence in more complex settings. By casting the problem as a sys-
tem of smooth non-linear equations the researcher can further fall back on powerful, well-established
solvers to find the solution to the problem and resort to a vast literature on ensuring robust conver-

gence.



Separate from solving the free boundary problem, I find that to robustly solve sovereign default mod-
els with long-term debt it is necessary to treat the non-linear term in the bond price equation fully
implicitly.! It is important to jointly solve the coupled PDEs of the value function and the bond pricing
equation and use the full, though highly sparse, Jacobian for updating. Further, to ensure robustness
I use a continuation method. To still obtain efficient computation I use sparse automatic differen-
tiation tools to compute the Jacobian and treat the jump terms explicitly reduce the computational

cost of each linear solve.

Relation to other approaches. The additional difficulty of strategic default models with endogenous
borrowing constraints lies in the fact that borrowing constraints restrict the computational domain of
the problem. That is, in addition to the standard conditions for optimal stopping time problems such
as value matching we have an additional state boundary constraint that dpends on the free boundary.
To the best of my knowledge, other methods such as LCP reformulations or Operator Splitting meth-
ods cannot straightforwardly deal with this. The reason is that one needs to impose the boundary
condition at the free boundary. Fixing the free boundary ex-ante simplifies this substantially. A po-
tential alternative are penalty methods as applied in Hurtado et al. (2022). However, here the difficulty

lies in choosing a common borrowing limit that is feasible for all income levels.

Literature. The front-fixing approach is not new, though its application to sovereign default models
with endogenous borrowing constraints to the best of my knowledge is. Landau (1950) first proposed
the method in thermodynamics and Crank (1957) first applied it to finite difference methods. The
front-fixing method has been introduced to option pricing by Wu & Kwok (1997) and since been suc-
cessfully applied to various option pricing problems by Nielsen et al. (2001), Zhu et al. (2003), Duffy
(2006), Heidari & Azari (2017), Fazio et al. (2021), Company et al. (2021). Closest to this paper is Born-

stein (2020). I propose the front-fixing framework as an alternative to his method.

!Gomez (2024) makes a related point in a macro-finance application.



2 Application 1: Sovereign default with short-term debt

2.1 Economic model

The first application is a sovereign default model with short-term debt. I consider a continuous-time
version of Arellano (2008) which is identical to Bornstein (2020). For a detailed exposition I refer the
reader to Bornstein (2020). At each instant a sovereign decides whether to repay their instantly matur-
ing debt or whether to default. The relevant state variables are assets a (i.e. savings or negative debt)
and income y. The decisions are over consumption ¢ = 0 and a default decision D € {0,1}. Default
can be characterised by a threshold rule a(y) such that D(a, y) = 0 for all a = a(y) and D(a, y) =1 for
all a < a(y). Income is subject to a compound Poisson process with arrival rate A, and a stochastic
jump size with density f(y, y"). During default a sovereign loses access to financial markets, incurs a
default cost ¢(y) and regains access to the financial markets at a rate Ap at which point it becomes
a zero asset sovereign. A competitive financial sector determines the short term interest rate r(a, y).
The set-up yields two value functions, v and w, the value of being solvent and the value of being in

default, respectively.

Concisely, the system of H]Bs for the value of being solvent v and of being in default w is defined by

pvia,y) = max{pw(y), max u(c) +0qv(a, y) [y—c+r(a,pal

- 2.1)
+/lyf0 [v(a,y)—via, )] fly, y’)dy’}
pw(y) =uly—¢y)+ /lyfo [w(y)—w] f,yhdy' + Ap [v(0,y) —w()] (2.2)
v(ay),y)=w(y) (2.3)
subject to the income-specific borrowing (state) constraint
a=a(y) VyeR",
and the endogenous interest rate schedule reflecting default
+oo
r(a,y) = rf+/1yf D(a, y" f(y,y)dy', (2.4)
0

and where (2.3) denotes the so-called value matching condition defining the location of the default



threshold, i.e. the free boundary. The default threshold is implicitly defined by (2.3) and coincides

with the borrowing limit as creditors will not give out loans to an instantly defaulting sovereign.

Three components make this problem non-standard: (i) the borrowing limit varies by income state
(ii) the borrowing limit a(y) must be consistent with the default decision D(a, y) and (iii) the interest
rate schedule r(a, y) reflects the sovereign’s likelihood of default. The value matching condition (2.3)
makes it clear why this is non-trivial to solve. We need v and w to compute a(y) but we need a(y) to

compute v and w.

A full statement of the problem would also include a set of boundary conditions. For conciseness, let

us focus on the state boundary constraint

Oqviay),y)=u'(y+r(a,y)a(y), forallyeR". (2.5)

This highlights the complication with other existing methods such as the Lincear complementarity
Problem (LCP) solver. The boundary condition explicitly depends on the free boundary a(y). The
explicit dependence on the boundary condition thus necessitates to keep track of the free boundary

unlike a LCP solver.?

2.2 Front fixing

The fundamental idea is to convert the free boundary problem into a problem on a fixed domain.
Specifically, we can perform a change of variable to obtain a fixed boundary problem where default
occurs at a pre-defined value. The default threshold then shows up explicitly inside the HJB equations
as parameters and not as a free boundary condition that needs to be solved for. There is a close
parallel to the analytical solution to optimal stopping time problems. Appendix A expands on this
point more formally using a simple option problem as an example. This makes the problem simpler

in one dimension and more complex in another as we now need to solve for endogenous variables.

2A linear complementarity problem (LCP) is given by the following conditions

Z/(Bz+q)=0
z=20
Bz+q=0.

However, in sovereign default models the matrix B is itself a function of the default threshold, i.e. whether z < 0. This is
no longer a linear problem.



Change of variables. Define the transformed state variable G := a—a(y) and a new function ¢ (a— a(y), y; a) =
v(a,y) where we will treat the default threshold a explicitly as a (infinite-dimensional) parameter.®
Crucially, this change of variable fixes the default threshold at @ = a — a(y) = 0 and the sovereign de-
faults if @ < 0. In this sense, the boundary is known in the transformed system to be at @ = 0 and the
computational domain is fixed at @ = 0. We can now solve the system of PDEs as per usual for a given

a(y) using finite differences Achdou et al. (2021).*
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(a) Untransformed grid. (b) Transformed grid.

Figure 1: Illustration of grid transformation.

Plugging our transformation into the HJB we get for a4 =0

p¢ (@ y) = maxu(c) +0a¢ (@ y) [y + (@ y) (a+a(y) -]
+00 (2.6)

+ Ay fo [p(a+ay)-ay",y)-o(ay)] fyyHdy
pwy)=uly - +2Ay fo [w() = wy] f,y)dy +Ap [@(-ay), y) - w(y)] 2.7)

@0,y)=w(y) (2.8)

subject to a = 0. The interest rate schedule is given by

r(a,y) = rf+/1yf Ha+a(y)—a(yf(y,y)dy'. (2.9)
y'eR*
30ther change of variables are equally valid. E.g. we may define & = g:gg i This did not change the main results for a

sufficiently fine grid.
*If the model featured other boundary conditions, e.g. smooth pasting, these could be explicitly imposed at the fixed
boundary a = 0 at no additional difficulty. We thus see that the approach is easily extended to richer environments.



Derivations are delegated to Appendix B.

Algorithm: A solution to the system of equations is one that is consistent with the HJB equations
(2.6)-(2.7), the interest rate schedule (2.9) and satisfies the value matching condition (2.8). This sug-

gests the following algorithm.

Discretize grids a and y as well as the stochastic process over y'. Initialize an arbitrary guess
for p(a, y) and w(y).

while [|p(0, y) — w(y)|lc > tol do

1. Given a(y) solve for r (4, y) using (2.9).;

2. Update ¢(a, y) and w(y) using (2.6) and (2.7) by standard methods (see Achdou et al.
(2021)).;

3. Check value matching (2.8). If not found root, perform a Newton update on (2.8) and

iterate on a(y).;

end
Algorithm 1: Solving short-term debt model.

The main benefit of the proposed method is that the borrowing constraint enters as a continuous
variable and is not forced to lie on a discretised grid. This improves accuracy of the solution, renders
the problem sufficiently smooth and enables the use of powerful, well-establishd non-linear equation
solvers to find the solution to (2.8). The resulting PDE is also not substantially more complex to solve
(for a given borrowing limit) than the standard model. Further, the fact that a enters explicitly as
parameters allows for an efficient computation of the Jacobian or Jacobian vector product to apply
the Newton or Newton-Krylov step. Jacobians can be computed using repeated application of the

change rule and the implicit function theorem. Details are delegated to Appendix C.5.

Numerical implementation. (2.6) is only a slightly modified version of the standard HJB. Specific-
ally, the only changes relative to a model without endogenous default and borrowing constraints are
(a) endogenous interest rate schedule (4, y) (b) a modified jump term including that implies correl-
ated transitions in assets and productivity and (c) the need to interpolate the value function off the
grid. While (a) and (c) can be dealt with in a straightforward manner using standard methods (b) ne-

cessitates some discussion. Specifically, I define three operators &[v](a, y) = 0+°° via, y) f(y,y)dy',



G f1(a,y) = fla+a(y),y), and 4 fl(a,y) = f(a— a(y), y) such that

+00
fo p@a+aly)—ay",y)f,ydy' = (o0& o M) 191G, ). (2.10)

We define .4, and .4 to be linear interpolation operators such that they correspond to matrices
with constant weights. In essence, we map the function into a space in which it is easier to take

expectations.’

That is, the operator & only requires integration over one and not two dimensions
which simplifies the computation. Linear interpolation operators are particularly useful as we can
store them as constant basis matrices and pre-compute the matrix corresponding to the operator

M08 oM. As this is a large and fairly dense matrix this achieves substantial speed gains.

2.3 Comparison with Bornstein (2020)

To benchmark the proposed method I compare the results to the method of Bornstein (2020). I follow
his calibration. The results are shown in Figure 2. The two solutions line up closely. However, the
front-fixing approach achieves greater accuracy as it does not restrict the borrowing limit to lie on the

grid. This is particularly important for the lower productivity grid points.
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Figure 2: Comparison of front-fixing method with front-tracking method of Bornstein (2020). Left.,
Middle:, Right:

The two methods also produce very similar policy functions as shown in 3. However, the front-fixing
method seems to be better able to capture precautionary savings for lower income countries. This
comes from the fact that front-fixing does not constrain the borrowing constraint to lie on a grid and

the borrowing limit is not constant for lower income levels.

5This has some parallels to taking the fast fourier transform to compute expectations.
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Figure 3: Comparison of front-fixing method with front-tracking method of Bornstein (2020). Savings
policy functions.

3 Sovereign default with long-term debt

Bornstein (2020) discusses two potential sources of non-convergence of the long-term debt sover-
eign default model: (1) discrete borrowing decision and (2) disrete default frontier. The method of
Bornstein (2020) overcomes the convergence issue (1), but not (2). Since the method proposed in this
paper does not restrict the default frontier to lie on a pre-specified grid it promises convergence even

in models with long-term debt.

3.1 Long-term debt

Instead of instantly maturing debt the sovereign issues bonds at a price g(a, y) with a geometric ma-
turity structure 1, and coupon payments z. This introduces another forward-looking equation that
determines the price of the government bond. The economic model is given by the following coupled

PDE:s for v(a, y), w(y) and g(a, y)

y+(z+Apa-c
q(a,y)

pvia,y) = max{pw(y), max u(c)+0oqv(a,y)

+00 3.1)
”Lyfo [v(a,y) - V(a,y)]f(y,y’)dy’}
+00
pw(y) = u(y—d(y) + Ay fo 00— )] £y )y + A (010, — () a2
viay),y) = w(y) 33)



y+(z+Ap)a—c*(a,y)

—Ab(l
q(a,y) (3.4)

+Ayf (q9(a,y)—qla, ] f,ydy'.

rrq(a,y) =z+Ap(1—q(a,y)) +0aq(a,y)

We note that equations (3.2) and (3.3) are unchanged. Relative to above, we replace the interest rate

schedule with the Feynman-Kac formula for the price of the bond (3.4).

Change of variables. We use the same change of variables as above, i.e. @ = a — a(y) and define two
functions ¢(a—a(y),y) = v(a,y) and Q(a—a(y),y) = q(a, y). The respective transformed equations

are

y—-c +( z+Ap
Qla,y) \Q(a,y)

+00
+ Ay fo [p(@a+ay) -ay),y)-e@y] fyy)dy

pp(a,y) :mcaxu(C) +0ap(a,y) —xlb) (Zl+g(y))]

(3.5)

+00
pw(y) =u(y—¢y) + Ay [w("—w] f,yVdy' + Ap [p(—a(y),y) —w()] (3.6)
0
y—c*(a,y) N ( z+ Ap
Q(a,y) Q(a,y)
+Ay fo [Q(a+ay) -ay),y')-Q@y] f(y.yHay

rrQ(a,y) =z+Ap(1-Q(a,y) +0:0Q(a, y)

- ?lb) (a +g(y))]
(3.7)

In the default region, the bond price schedule is zero, i.e. Q(&, y) =0 for all @ < 0. The value matching

condition is

@0,y) =w(y). (3.8)

In principle, the procedure is unchanged from above. In practice, long-term bonds introduce addi-
tional complexities and require more robust solution techniques. The reason is that the bond pricing
equation and the value function equation are highly nonlinear in the bond price Q(4, y). Specifically,

I employ the following techniques:

1. Fully implicit: 1 treat the coupled system (3.5) and (3.4) jointly as a large system of non-linear
equations and apply a Newton method on it to update the guess for ¢(a, y) and Q(4, y). To still
obtain efficiency, I use an implicit-explicit discretisation method in which I treat jump terms

explicitly. I then use sparse automatic differentiation to compute the Jacobian of the system.

2. Continuation method: To robustly solve for the bond price I employ adaptive time stepping

10



techniques similar to Coffey et al. (2003) and Gomez (2024). Intuitively, we are employing a
homotopy method of the form G(x"V, x) = AF(x""1) 4 ("D — xU") = 0, where F(x) is the
stacked system for ¢ and Q. For small A we are guaranteed to solve the root of G and improve

our guess. Continuing along this path of updates proves to be a robust method for solving F.

These numerical intricacies are, however, separate from the front fixing method and also present in
Bornstein (2020). In fact, the replication code from Bornstein (2020) also has difficulties to achieve
convergence in the bond price schedule at moderate tolerance levels. Appendix C.8 contains further

details.

Discretize grids a and y as well as the stochastic process over y'. Initialize a guess for ¢(a, y),
w(y) and Q(a, y). Let x© = [(p(o); Q(O)]. Set iteration counter to 0.

while [|p(0, y) — w(y)|le > tol do
1. Use (3.5) and (3.4) to define system F(x"*!, x("™) using the Implicit-Explict IMEX)

scheme. Define G(x""*D, x(M) = F(x"+D x4 M;
while ||G|| > tol do
1.1 Use Newton method (possibly with line search) to solve the root x"*V of G.;
1.2 Check whether the Newton method has converged. If not, reduce A. If converged,
we may increase A to achieve faster convergence.;
end

2. Check value matching (3.3). If not found root, perform a Newton update on (3.3) and

iterate on a(y).;

end
Algorithm 2: Solving long-term debt model.

Enforcing risk-free rate for savers: The above formulation does not capture that the bond sched-

ule is only defined for a < 0, i.e. for borrrowers. To enforce that I use a penalty method that ensures

z+Ap

that the bond price schedule is equal to the risk-free price =y

for all a = 0. More generally, one
could impose another boundary condition at @ = —a(y) that ensures that a sovereign will never save

— capturing the idea that the bond exclusively captures debt. Alternatively, one could consider altern-

a

ative change of variables such as a = —; 0

that would ensure a fixed computational domain on [—1, 0]

regardless of the borrowing limit.

11



3.2 Comparison with Bornstein (2020)

In Figure 4 I compare the solution to the front-fixing method of the long-term debt model to the
replication code from Bornstein (2020). The solutions of the respective methods line up pretty well in

terms of the borrowing limit while the front-fixing method achieves greater accuracy.

Borrowing limits (Long-term debt) Value matching error (Long-term debt)
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Figure 4: Comparison of front-fixing method with frial method of Bornstein (2020) for long-term debt
model.

In contrast to the short-term debt model the policy functions between the different models diverge
slightly as shown in Figure 5. This is mainly driven by a more accurate solution to the bond pricing
equation relative to Bornstein (2020). In fact, Figure 6 shows that the residual of the bond pricing
equation is non-negligible in Bornstein (2020) for a region in the state space. What is more, the re-
gion with the largest residuals coincides with where the probability of default starts to increase. This
underscores the importance of using a fully implicit method that uses the information from the full

Jacobian of the system for solving the long-term debt model.

3.3 Transition dynamics

Next, I show how to apply the front fixing technique to computing transition dynamics or more gen-
erally to a time-dependent problem. I consider the simplest model with short-term debt from Sec-

tion 2. The borrowing limit is now defined by the mapping (y, ) — a(y, t). The system of the non-
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Figure 5: Comparison of front-fixing method with frial method of Bornstein (2020) for long-term debt
model. Savings policy functions.
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Figure 6: Comparison of front-fixing method with frial method of Bornstein (2020) for long-term debt
model. Residual in bond pricing equation.

transformed HJBs is

pvsla,y) = max{pw(y), max u(c) +0qv(a,y) [y— c+ rt(a,y)a]
+Ay fo [vi(a, ) —via ] f,y)Hdy' (3.9)
+ Dz(a,y)}

+Ap [v:(0,y) — we(y)] + e (y)
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vi(a(y, 1),y) = wi(y)
subject to the income-specific borrowing (state) constraint
az=a(yt), Y(y, t)eIRi
and the endogenous interest rate schedule reflecting default

+00
re(a,y) = rf+7tyf0 D(a,y) f(y,y)dy',

Change of variables. Again we guess a function ¢, (a— a(y, 1), y) := v:(a, y) such that

p@:(a,y) = maxu(c) +0z¢:(a, y) [y—c+ri@ y)a+aly 0]

+Ay f [pc@+aly,0-aly,n,y)—e(a ] f(y,y)dy

+ (pl'(dr J/) - ad(pl'(ay y)ﬂ(y; t)

=Zpi(a—ay,,y)
Collecting terms, in the no default region a = a(y, t)

p@:(@,y) = maxu(c) +02¢:(a, y) [y—c+riay)a+aly, ) —ay1]
+/1yf [pi(@a+aly,n—aly,0,y)—p@y| fly,yHdy

+¢:(a,y)

(3.11)

(3.12)

(3.13)

(3.14)

Numerical example: Suppose that the rate at which sovereigns re-join capital markets transitions to

anew, higher value. Specifically, Ap () = 0.015- (Ap (1) — AH).
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Discretize grids @ and y as well as the stochastic process over y’. Compute initial and
terminal steady states. Initialize a guess for the time path ¢(a, y, t) and w(y, t) (e.g. terminal
steady state). Set iteration initial time 7 to T.

for nin 1:N do
1. Given ¢(e,e,t) and w(e, f) find @(e,, t —A) and w(e, t — A) that jointly solves (3.14) and

the value matching condition (3.11) evaluated at ¢ — A. A Broyden method with

occasional Jacobian resetting works well in practice.

2. Sett=t—A.If t =0, stop. Otherwise, continue iterating backwards.

end
Algorithm 3: Solving transition dynamics in short-term debt model.

The time path of the borrowing limit along the transition path is shown in Figure 7.
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Figure 7: Transition dynamics to change in Ap.

4 Conclusion

I propose a front-fixing framework to solving sovereign default models with endogenous borrowing
constraints and borrowing costs. I apply the method to both short-term and long-term debt models.
The front-fixing approach keeps the computational domain fixed which simplifies the problem while
treating the borrowing constraints as continuous variables allows for greater accuracy. I show how
Jacobians and Jacobian vector products can be efficiently computed by exploiting the structure of
the problem and the chain rule. I also sketch possible extensions of the framework to models with

diffusion and transition dynamics.
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A An analytical example

The front-fixing approach essentially is the numerical implementation of the analytical approach to
solving optimal stopping time problems. To illustrate this, consider the following simple stopping
time problem. A firm has the option to shut down and sell its asset at any time at a scrap value S.
Suppose that entrepreneurs have utility u(x) = log(x) over profits and that profits follow a geometric
Brownian motion

aX;

Tt:—l.ldt'i'o'dB[. (Al)

The optimal stopping time problem is

1
rv(x) =logx—v' () ux+-c’x*v"(x), x>x
2 (A.2)
v(x) = So, X< X.
The familiar boundary conditions are
lifn v(x) =Sp (Value matching)
xlx
li?l V(x)=0 (Smooth pasting)
xlx

We call this a free boundary problem in the sense that the boundary x is unknown and must be solved
for. Specifically, the boundary must satisfy the boundary conditions of value matching and smooth

pasting. To obtain a solution we proceed in a series of steps:

1. Change of variable: We transform the problem into a fixed domain and define the new function

@ (i) = v(x) such that, denoting by X := 3,

1
r(X) =log(x) +log(X) — ¢’ (X) ux + Eaziz(p"(fc), 7>1

(A.3)
@(X) = So, x<1.
@(1) = So, 9'1)=0 (A.4)
O+ /12 2
2. Solve the ODE: The homogeneous solution to the ODE is ¢; x*' + ¢, x*2, where z; » = ”i’;—;zar

and fI:= p+ %02. By standard arguments we rule out the explosive root for the homogeneous
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. i~/ (2 +202 Lo _
solution and denote z = —% such that the homogeneous part of the solution is ¢; x%.

To find the particular solution we guess ¢ (X) = A+ Blog(x) and plug this into the ODE. This gives
us the particular solution as a function of the free boundary
(1 1

A = (1og§— E), B=-. (A.5)
r r r

Next, we impose smooth pasting. That is, we require that ¢’(1) = 0 which gives us the boundary
condition

1
—ZC+_:0, — C= —. (A.6)
Note that this is what we would do in a numerical solution. We impose one boundary condition

and solve for the value function that is parameterised by the free boundary x yet to be solved.

3. Solve for the boundary: We now use the value matching condition. This requires that ¢ (1) = Sy

which gives us

1 pt+30° 1
Ax)=S0— —, = x=expyrSo+ —-— . (A.7)
rz z
Putting all components together we observe that
(So-L)+Lx?+log®  %>1, p+ 0% —\J(u+ L2 + 20
@(X) = ; z=- = (A.8)
So <l

In the numerical solution we would proceed in a similar manner. The only difference is that we would
need to solve the PDE in 2. numerically using a monotone finite difference scheme and solve 3. using
aroot finding algorithm. We also cannot generically impose both smooth pasting and value matching
as boundary conditions of the finite difference operators and thus we would need to proceed in a
similar fashion, by imposing one boundary condition and using the other boundary condition to solve

for the free boundary. It does not make a difference which of the two is imposed first.
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Figure 8: Price of option for different solution methods: (i) analytical solution (ii) mixed complement-
arity problem (iii) front-fixing.

B Derivations for change of variable

Plugging our change of variable ¢ (a— a(y), y) := v(a, y) into (2.1) we get for all a > a(y)

0
pp(a-a(y),y)=maxu(c)+—¢(a—ay),y)[y-c+r(aya]
¢ oa (B.1)

+00
+ ﬂfo [p(a—a(h,y)—e(a—aWw),y)] fy,yHdy

Using the chain rule, or definition for @ = a — a(y) and conjecturing denoting r(a, y) = r(d, y) we get

pp(a,y)= max u(c) +0a¢ (@, y)[y—c+r@ya+a)
(B.2)

+00
+7th [p(a+ay)-ay),y)-¢(ay)] fy.yHdy

C Numerical details

C.1 Finite difference scheme

The general numerical scheme to solve PDEs largely follows Achdou et al. (2021). Consider the HJB

for a solvent sovereign

pw(a,y) = max u(c) + Llgl(a, y,c; a(y)) + Mlyl(a, y; a), (C.1)
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where the operators are defined as LI1(a, y, ¢; a(y)) := 0a9(a, y) [y + r(a, y)(a+ a(y)) — c¢] and Mll(a, y;a) =
Ay fo & lpa+ay) —ah, vy - @ y| f (v, yHay'.

We compute the PDE numerically using finite difference stencils of these operators. Using these sten-
cils the PDE boils down to

(pI-L(c*;0)—M(@) ¢ = u(ch), (C.2)

where c* is the optimal policy function. In the short-term debt version of the model this boils down to
a simple matrix inversion.® More generally, e.g. in the long-term debt version, we need to solve a fully
non-linear system of equations for each point in time #. We can employ a standard Newton algorithm.

We then solve for ¢ as

Fdp=~[(pI-L"(c*;a) - M (@)™ —ulc™], @™ =¢"+do. (C.3)

For stability purposes we may also use fictional time-stepping, which in the above notation would
show up as a dampened Newton method akin to the well-known Levenberg-Marquardt algorithm.
The advantage of writing the equation in the above way is that we may use matrix-free Krylov methods
to solve for d¢ (e.g. BICGSTAB or GMRES). This can be particularly useful if the dimension of the
state space is large or if the jump process is very dense. Instead of computing the factorisation of
the Jacobian we only need to compute matrix-vector products which can be much more efficient.

Furthermore, we can reuse previous iterations to use as initial guess for Krylov subspace based solvers.

C.2 Implicit-explicit scheme

The above scheme corresponds to a so-called fully implicit scheme. These schemes tend to be most
stable — even for large time steps. However, they are also computationally more expensive. In particu-
lar, if the jump matrix is very dense this can be a bottleneck in the code. An alternative scheme that is
popular in option pricing is the IMEX (implicit-explicit) scheme which treats the differential operator

implicitly and the jump operator explicitly. For example, consider the HJB

pp:(a,y) = max u(c) + Llpl(a, y,c;a(y) + Ml (a, y;a) +0p:(a, y). (C.4)

Spotential non-linear effects cancel due to the envelope condition.
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The fully implicit method uses the discretisation

p9u(@,) = maxu(c) + Lilpi)(@,,¢: @) + Milp (@ y; @ + LEAEL LN (g

We solve for ¢ as ¢ = (I+A[pI— (L4 +M,;+A)])_1 [Au(c), )+ @iral.

The implicit-explicit scheme uses the discretisation

(Pt+A(d; J/) _(pt(dy y)
A .

pp:(a,y) = max u(c) + Lesalodd(@, y, ¢ a(y)) + Mepalpral(a, y; a) + (C.6)

We solve for ¢; as ¢, = (I+A [pI—LHA])_l [Au(cl, \) + U +AMin) @r4a].” We may also replace ¢,

in the jump term with an extrapolation ¢, = @ + W “A=201A— Prioa.

C.3 IMEX-BDF2

In the above we have simply used d,¢:(d, y) =

w. Different discretisations are possible.

For example the BDF2 scheme® uses 0,¢,(d, y) = —3"’th(dry)—4<l’2téﬁvy)+<pzm(d,y)

(recall that we're going
backwards in time). Further, the IMEX-BDF2 scheme uses an extrapolation step for the jump term to

approximate ¢, = ¢ + LA = 2¢0, — ¢, 4. Hence, the discretised HJB becomes

30-a(a,y) —4¢:(a,y) + r+a(a, y)
2A '

pY-ala,y) = max u(e)+Lil@-ala,y,c;a(y)+M:[2¢—@ial(a, y; a)—
(C.7)

This can now be solved for ¢, = (I+2A(pI - Lt))_l [2Au(c}) +4T+AMp) @ — (I+2AMp) @rin]. It

is straightforward to extend this method to other time integration schemes.

"In practice, if the operator M[¢l(a@, y;a) = A, [ fy @@+ ay) - a(y),y) (3, y)dy —¢(@,y)] it is useful to split the
integral term and the other term. That is, denote M[@](d,y;a) = A fy ¢(a+ a(y) - a(y),y) f(y,y")dy' and the IMEX
scheme reduces to solving ¢, = (I+A[(p +/1y)I—Lt+A])_1 [Au(c}, \) +(I+AM4n) @r+a]. This turns out to have nicer
properties.

8See https://en.wikipedia.org/wiki/Backward_differentiation_formula.
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C.4 Splitting computation of ¢ and w

The value matching condition (2.8) imposes ¢(0, y) = w(y). Define the set o = {y' e R* : @+ a(y) —

a(y') = 0}. It follows that we can compute the integral term as follows

+00
fo pa+aly)—ay)fyyhdy = fd p@a+aly)—aly")fy,yhdy + fdc w(yf(y,yhdy  (C.8)

zfdgo(d+g(y)—g(y’))f(y,y’)dy’+fdc<p(0,y’)f(y,y')dy’. (C.9)

It follows that we do not require any knowledge of the default value function w to compute the value
function ¢ of being solvent. We can split the computation of the two value functions. Once we com-
puted ¢, we can easily back out w from (2.7) via a simple linear solve. What is more, we can pre-

compute and store the factorisation of the Jacobian of the system.

C.5 Computing Jacobian

The solution to the sovereign defaul problem can be succinctly summarised as the triplet (¢, w, a) that

solves the following systems

H(p,a)=0 (HJB solvent)
Glp,w,a) =0 (HJB default)
F(p,w)=0 (Value matching)

The algorithm in the main text proceeds by fixing a guess for a, solve for the tuple (¢, @) and at last
update a using the value matching equation. The updating of the default threshold a is done using a
Newton method

da=-F", a""'=ad"+da. (C.10)

Classic Newton: We wish to compute the Jacobian of the system F(v, w) = 0. This is a non-linear
system nesting other non-linear functions. We can compute the Jacobian of the system using the

chain rule together with the implicit function theorem. That is, we can write the Jacobian as
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-1 -1
In turn we have dw = — [S—g] (g—gd(p + g—gdg) anddg = - [‘3—5] %dg. Hence, combining all parts®

dF:{(aF OF [_aG]-lac)[ OH|™'0H OF [_ac]-lac}dg

—t—|-—=| == —=+=|-—| — C.12
op Ow| Ow] OJ¢ op da Ow| Oow| Oda ( )
This may not seem like considerable progress at first, but thanks to the envelope theorem we can
directly reuse the matrix that we constructed for the solution of the HJB. Further, g—g and g—g corres-
ponds similarly to the matrix that we have pre-computed for the linear solve of the value function in
the default state.'® It follows that the most complex objects (i.e. of the greatest dimensionality) can

be reused directly from the inner loop. The remaining Jacobians can be computed efficiently using

automatic differentiation.

There are potentially large efficiency gains in this computation by simply using clever bracketing.

That is we want to solve the smallest systems first and then use the results to solve the larger systems.

Newton-Krylov: Computing the full Jacobian as outlined above may be inefficient if the dimension-
ality grows large. The main bottleneck is the linear solve [—%] - %—Z. The number of linear solves
required is that of the dimensionality of a while the size of each system to be solved corresponds to
the dimension of ¢. On the other hand, the Jacobian-Vector product %d a only requires solving a

-1
single linear system [ - %—g (%—Z d g) .

Specifically, we can proceed as follows using the following directional derivatives

0H1™'  Hwa+t-da)—HW,a)
dv=|—-—— lim = = —
) 1—0 t
dw = [_O_G ) (lim Gw,v+t-dv,a) - Gw,v,a) +limG(w,v,g+ t-da)-G(w,v,a) (C.13)
ow —0 t =0 t
dF:limF(v+ t-dv,w) +limF(v,w+ t-dw)
t—0 t t—0 t

With recursive computation of the Jacobian-Vector products we can compute dF very efficiently. This

9Another approach is to use the implicit function theorem on the larger system and note that

Gy Gu
F, Fu

G
€ da.
Fq

de
dw

However, for efficiency reasons it is better to use the chain rule, especially when computin the Jacobian-Vector products.
When dealing with the Jacobian-Vector products we in fact do not need to compute all elements of the Jacobian.
10This is the straightforward result from the fact that the Jacobian of a linear system is equal to the linear map.
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allows us to use e.g. GMRES or BicGstab to find the Newton updating step or equivalently the updating
direction da. This involves an iterative approach. That is, guess a direction d a solve for the directional

derivative d F and update until dF = —F".

Finite difference JVP: The directional derivative can also be computed using finite differences. Some
existing non-linear solvers do this automatically such as the KINSOL solver from Sundials.!! This is

the easiest for the user to implement but introduces numerical error.

C.6 Analytical Jacobian

Consider the HJB and take the derivative with respect to a(j). Denote y(a, y, a(j)) = %(y)(p(a, y). It

can be shown that

or
da(y)

via,y,a) =ulc*(a,y)+u'(c* (@) |[1{y=p+ (a,y)

+a(l1//(a)y) j))d
e (C.14)
+7Lyf0 [w(a+ay)—a(",y,a(@) —w(a,y,a@)] fyy)dy'

+00
myfo w'(c*(a+ay)-ay),y) 1=y -1 =y} f,y)dy'

That is, the Jacobian satisfies their own PDE. However, numerically it is more stable to work with the

discretised system directly and not necessarily with the ideal system.

C.7 Updating without a Jacobian

The following algorithm works as well, though it is much less efficient. suggests the following al-

gorithm.

"Eor more details see https://sundials.readthedocs.io/en/latest/kinsol/Mathematics_link.html. For
a Julia implementation see https://docs.sciml.ai/NonlinearSolve/stable/solvers/nonlinear_system_
solvers/.
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Discretize grids a and y as well as the stochastic process over y'. Initialize an arbitrary guess
for p(a, y) and w(y).

while [|¢(0, y) — w(y)lle > fol do
1. Solve for ¢ and w given a guess for a.

2. Compute the value matching error. If the error is sufficiently small quit, otherwise
proceed to the next step.
3. Using the HJB for the default value function find the update of the default threshold a

by solving

+00
/lpqo"(—g”“(y),y)z(p+/1y+/lp)wn(y)—/1yf0 w" W fyyhdy—uly - (), Vy.
(C.15)

We can use linear interpolation to compute the inverse of ¢ and back out a new update

for a(y).

end
Algorithm 4: Iterative algorithm for short-term debt model.

C.8 Long-term debt

Since 1/q(a, y) appears in the asset drift the joint system of PDEs is highly non-linear. To solve this
system efficiently I use a fully implicit IMEX-BDF2 scheme. At each instant ¢ I solve the non-linear
system of equations using a Newton solver, using the fact that the Jacobians are highly sparse to speed

up computations. This can be achieved via matrix coloring and sparse automatic differentiation.

Consider the joint discretised system which we solve for ¢ and Q at each time step. Old values are
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denoted with superscript z and the new values with superscript n + 1.

n+l

Q" Ya,y) \Q"(a,y)
+00
+Mf0 [w”(mg(y)—g(y’),y’)—w”*l(é,y)]f(y,y’)dy’}
"Gy -9" M ay)
A _

n ~ n ~ n ~ y_Cn+1(d’y) Z+/1b ~
r Q"N (@, y) - z+ Ap(1- Q" (@, y) - 0.Q" (@, y) "Gy, (Qnﬂ(d,y) —Ab) (a+g(y))]

- Mfo [Q"(a+ay)-a(h,y)-Q @] fy,yhdy
Q'@ y-Q" G,y
A

p(p”“(iz,y)—{u(c —/11;) (51+g(y))]

(C.16)

The algorithm proceeds as follows:

while [|¢(0, y) — w(y)lleo > tol do
1. For a given guess of ¢" and Q" solve the above system (C.16) using a Newton method

for a given time step A. For A sufficiently small the system is guaranteed to converge. If
the Newton solver stagnates reduce the time step A.

2. Once the system has been solved for ¢"""! and Q"*!, check for convergence in

Nez N+l nez NN+l 5
2 (@) - @Y) and L&) f (@Y) 1f the error is sufficiently small proceed to the next

time step, otherwise repeat the above step.

3. Once the system has been solved for ¢"! and Q"*! we can solve for w. This solves the
inner loop. We check the error of the value matching condition. If the error is sufficiently
small we are done. If not proceed to the next step.

n+1, Qn+1

4. With functions ¢ and w""! we compute the Jacobian and/or Jacobian vector

n+1

product of the system and find an update for the borrowing limits a

end
Algorithm 5: Details long-term debt algorithm.
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D General change of variable

D.1 Derivative Mapping

Consider the following change of variable f(g(x, y), h(x, y)). Then,

VI R = fige+ fahi flgy+fzhy]

] D.1
8x 8y (B
“|h L
) hy hy
The Hessian is given by
V2 f(g(x, y), hix,y)) =
fllggzc+2f12gxhx+f22h;2¢+f1gxx+f2hxx fllgxgy+f12(gxhy+gyhx)+f22hxhy+f1gxy+f2hxy
$118x8y + fi2(gxhy + gyhy) + fa2hxhy + f[18xy + fohxy fllg)zz+2f12gyhy+f22h§/+flgyy+f2hyy
-T'
8x 8y fir fiz]| |8 & 8xx 8xy hyx  hyy
= +f1 +f2
hy hy fiz f2| |8 By 8xy 8yy hxy  hyy
| 't 11 ]
8x gy fll f12 8x gy 8xx gxy hxx hxy fl
= + el |.
hy hy fiz fa| |he hy 8xy 8yy hxy hyy f2
] S o ] (D.2)
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D.2 Simplification

Consider a special case of the above in which gy = hy, =1, hy =0, gxx = gxy = hxx = hyy = 0 and

0 0 0 0 0O h 0 0
> = . This implies that L | = . Then,
0 o 0 gy 0 O|||f 0 figyy
0 0 1 0 1 gy 0 offo0o O
trace {ZVf(g(x,y), h(x,y))} = trace V2 f + trace
0 o%||g 1 0 1 0 o%| |0 figyy

1 g0 0|1 O

= o”trace { VEf b +0’figyy
0 1|0 1|]|g 1
0 gy[|1 O

= o’trace V2 f +02f1gyy
0 1]||g 1

2

gy gy

= o’trace V2 f +02f1gyy
gy 1

8y
2 2 2
=0"1g, 1 verf +0° f18yy-
’ 1

(D.3)
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